Questões de Matemática retiradas das provas anteriores do Exame Nacional do Ensino Médio - ENEM
O Índice de Desenvolvimento da Educação Básica (Ideb), criado para medir a qualidade do aprendizado do ensino básico no Brasil, é calculado a cada dois anos. No seu cálculo são combinados dois indicadores: o aprendizado e o fluxo escolar, obtidos a partir do Censo Escolar e das avaliações oficiais promovidas pelo Inep.
O Ideb de uma escola numa dada série escolar pode ser calculado pela expressão
Ideb = N x P,
em que N é a média da proficiência em língua portuguesa e matemática, obtida a partir do Sistema de Avaliação da Educação Básica (Saeb), e variando de 0 a 10. O indicador P, que varia de 0 a 1, por sua vez, refere-se ao fluxo escolar, pois considera as taxas de aprovação e reprovação da instituição, sendo calculado por
P = 1/T,
em que T é o tempo médio de permanência dos alunos na série.
Disponível em: www.inep.gov.br. Acesso em: 2 ago. 2012.
Uma escola apresentou no 9º ano do ensino fundamental, em 2017, um Ideb diferente daquele que havia apresentado nessa mesma série em 2015, pois o tempo médio de permanência dos alunos no 9º ano diminuiu 2%, enquanto a média de proficiência em língua portuguesa e matemática, nessa série, aumentou em 2%.
Dessa forma, o Ideb do 9º ano do ensino fundamental dessa escola em 2017, em relação ao calculado em 2015,
A) permaneceu inalterado, pois o aumento e a diminuição de 2% nos dois parâmetros anulam-se.
B) aumentou em 4%, pois o aumento de 2% na média da proficiência soma-se à diminuição de 2% no tempo médio de permanência dos alunos na série.
C) diminuiu em 4,04%, pois tanto o decrescimento do tempo médio de permanência dos alunos na série em 2% quanto o crescimento da média da proficiência em 2% implicam dois decréscimos consecutivos de 2% no valor do Ideb.
D) aumentou em 4,04%, pois tanto o decrescimento do tempo médio de permanência dos alunos na série em 2% quanto o crescimento da média da proficiência em 2% implicam dois acréscimos consecutivos de 2% no valor do Ideb.
E) aumentou em 4,08%, pois houve um acréscimo de 2% num parâmetro que é diretamente proporcional e um decréscimo de 2% num parâmetro que é inversamente proporcional ao Ideb.
“1, 2, 3, GOL, 5, 6, 7, GOL, 9, 10, 11, GOL, 13, GOL, 15, GOL, 17, 18, 19, GOL, 21, 22, 23, GOL, 25, ...”
Para a Copa do Mundo de Futebol de 2014, um bar onde se reuniam amigos para assistir aos jogos criou uma brincadeira. Um dos presentes era escolhido e tinha que dizer, numa sequência em ordem crescente, os números naturais não nulos, trocando os múltiplos de 4 e os números terminados em 4 pela palavra GOL. A brincadeira acabava quando o participante errava um termo da sequência.
Um dos participantes conseguiu falar até o número 103, respeitando as regras da brincadeira.
O total de vezes em que esse participante disse a palavra GOL foi
A) 20.
B) 28.
C) 30.
D) 35.
E) 40.
Um agricultor sabe que a colheita da safra de soja será concluída em 120 dias caso utilize, durante 10 horas por dia, 20 máquinas de um modelo antigo, que colhem 2 hectares por hora. Com o objetivo de diminuir o tempo de colheita, esse agricultor optou por utilizar máquinas de um novo modelo, que operam 12 horas por dia e colhem 4 hectares por hora.
Quantas máquinas do novo modelo ele necessita adquirir para que consiga efetuar a colheita da safra em 100 dias?
A) 7
B) 10
C) 15
D) 40
E) 58
Por muitos anos, o Brasil tem figurado no cenário mundial entre os maiores produtores e exportadores de soja. Entre os anos de 2010 e 2014, houve uma forte tendência de aumento da produtividade, porém, um aspecto dificultou esse avanço: o alto custo do imposto ao produtor associado ao baixo preço de venda do produto. Em média, um produtor gastava R$ 1 200,00 por hectare plantado, e vendia por R$ 50,00 cada saca de 60 kg. Ciente desses valores, um produtor pode, em certo ano, determinar uma relação do lucro L que obteve em função das sacas de 60 kg vendidas. Suponha que ele plantou 10 hectares de soja em sua propriedade, na qual colheu x sacas de 60 kg e todas as sacas foram vendidas.
Disponível em: www.cnpso.embrapa.br. Acesso em: 27 fev. 2012 (adaptado).
Qual é a expressão que determinou o lucro L em função de x obtido por esse produtor nesse ano?
A) L(x) = 50x – 1 200
B) L(x) = 50x – 12 000
C) L(x) = 50x + 12 000
D) L(x) = 500x – 1 200
E) L(x) = 1 200x – 500
A)
Uma casa lotérica oferece cinco opções de jogos. Em cada opção, o apostador escolhe um grupo de K números distintos em um cartão que contém um total de N números disponíveis, gerando, dessa forma, um total de C combinações possíveis para se fazer a marcação do cartão. Ganha o prêmio o cartão que apresentar os K números sorteados. Os valores desses jogos variam de R$ 1,00 a R$ 2,00, conforme descrito no quadro.
Um apostador dispõe de R$ 2,00 para gastar em uma das cinco opções de jogos disponíveis.
Segundo o valor disponível para ser gasto, o jogo que oferece ao apostador maior probabilidade de ganhar prêmio é o
A) I.
B) II.
C) III.
D) IV.
E) V.
Uma editora pretende fazer uma reimpressão de um de seus livros. A direção da editora sabe que o gasto com papel representa 60% do custo de reimpressão, e que as despesas com a gráfica representam os 40% restantes. Dentro da programação da editora, no momento em que ela realizar a reimpressão, o preço do papel e os custos com a gráfica terão sofrido reajustes de 25,9% e 32,5%, respectivamente. O custo para a reimpressão de cada livro, nos preços atuais, é de R$ 100,00.
Qual será o custo, em real, para a reimpressão de cada livro com os reajustes estimados de custo de papel e despesas com a gráfica?
A) 128,54
B) 129,20
C) 129,86
D) 158,40
E) 166,82
Um fazendeiro possui uma cisterna com capacidade de 10 000 litros para coletar a água da chuva. Ele resolveu ampliar a área de captação da água da chuva e consultou um engenheiro que lhe deu a seguinte explicação: “Nesta região, o índice pluviométrico anual médio é de 400 milímetros. Como a área de captação da água da chuva de sua casa é um retângulo de 3 m de largura por 7 m de comprimento, sugiro que aumente essa área para que, em um ano, com esse índice pluviométrico, o senhor consiga encher a cisterna, estando ela inicialmente vazia”.
Sabe-se que o índice pluviométrico de um milímetro corresponde a um litro de água por metro quadrado. Considere que as previsões pluviométricas são cumpridas e que não há perda, por nenhum meio, no armazenamento da água.
Em quantos metros quadrados, no mínimo, o fazendeiro deve aumentar a área de captação para encher a cisterna em um ano?
A) 1,6
B) 2,0
C) 4,0
D) 15,0
E) 25,0
É comum as cooperativas venderem seus produtos a diversos estabelecimentos. Uma cooperativa láctea destinou 4 m3 de leite, do total produzido, para análise em um laboratório da região, separados igualmente em 4000 embalagens de mesma capacidade.
Qual o volume de leite, em mililitro, contido em cada embalagem?
A) 0,1
B) 1,0
C) 10,0
D) 100,0
E) 1 000,0
A gerência de uma loja de eletrônicos organizou em um quadro os dados de venda (quantidade e preço unitário) de celulares, impressoras e notebooks de um ano.
Para o ano seguinte, deseja arrecadar 10% a mais do que foi arrecadado naquele ano anterior, vendendo as mesmas quantidades de cada um desses três produtos, mas reajustando apenas o preço do notebook.
O preço de venda a ser estabelecido para um notebook, para o ano seguinte, em real, deverá ser igual a
A) 975,00.
B) 990,00.
C) 1 040,00.
D) 1 065,00.
E) 1 540,00.
{TITLE}