Uma maneira muito útil de se criar belas figuras decorativ...

Uma maneira muito útil de se criar belas figuras decorativas utilizando a matemática é pelo processo de autossemelhança, uma forma de se criar fractais. In...

INEP - Matemática - 2012 - Exame Nacional do Ensino Médio - Primeiro e Segundo Dia - PPL

Uma maneira muito útil de se criar belas figuras decorativas utilizando a matemática é pelo processo de autossemelhança, uma forma de se criar fractais. Informalmente, dizemos que uma figura é autossemelhante se partes dessa figura são semelhantes à figura vista como um todo. Um exemplo clássico é o Carpete de Sierpinski, criado por um processo recursivo, descrito a seguir:


• Passo 1: Considere um quadrado dividido em nove quadrados idênticos (Figura 1). Inicia-se o processo removendo o quadrado central, restando 8 quadrados pretos (Figura 2).

• Passo 2: Repete-se o processo com cada um dos quadrados restantes, ou seja, divide-se cada um deles em 9 quadrados idênticos e remove-se o quadrado central de cada um, restando apenas os quadrados pretos (Figura 3).


• Passo 3: Repete-se o passo 2.



Admita que esse processo seja executado 3 vezes, ou seja, divide-se cada um dos quadrados pretos da Figura 3 em 9 quadrados idênticos e remove-se o quadrado central de cada um deles.


O número de quadrados pretos restantes nesse momento é

A) 64.
B) 512.
C) 568.
D) 576.
E) 648.

A B C D E

{TITLE}

{CONTENT}
Precisa de ajuda? Entre em contato.